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Purpose 

To better enable climate-smart decision-making, the U.S. Department of Agriculture 

Northeast Climate Hub engaged researchers at Rutgers University to conduct a synthesis of the 

current state of knowledge concerning how Northeastern U.S. coastal forests, specifically those 

in mid-Atlantic and southern New England states (VA, MD, DE, NJ, NY, CT, and MA), are 

responding to impacts from climate change. Drawing upon the scientific literature, expert 

interviews, and a January 2020 convening of scientists and land managers at the U.S. National 

Agricultural Library, Beltsville, Maryland, this synthesis identifies key knowledge gaps as well 

as potential management approaches.  

Introduction 

Sea-level rise in the Northeast and mid-Atlantic to date is higher than the global average 

due to the effects of both natural and anthropogenic land subsidence, and potentially also in the 

future due to changes in ocean circulation and gravitational effects of Antarctic ice melt (Sweet 

et al., 2017b; Kopp et al., 2019).  The rise of global temperatures, approximately 1°C above pre-

industrial levels, has caused thermal expansion of the warmer ocean water and land ice to melt, 

with both contributing to an acceleration in the rise of global mean sea level (Allen et al., 2018; 

Gregory et al., 2019; Nicholls and Cazenave, 2010).  Local relative sea-level rise is projected to 

continue to be higher in the Northeastern U. S. than many areas around the globe (Kopp et al. 

2019; Gornitz et al., 2019; Boesch et al. 2018; Sweet et al., 2017b; Oppenheimer et al., 2019).  

Coastal flooding from storm surge associated with tropical cyclones (hurricanes and tropical 

storms) and extratropical cyclones (Nor’easters) affects our coastlines; historical sea-level rise 

has intensified this coastal storm flooding (Gornitz et al., 2019).  
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Higher sea levels will increase flood baselines and increase impacts from high tides and 

coastal storms such as hurricanes and Nor’easters (Kopp et al., 2019).   While most studies do 

not project an increase in the global frequency of tropical cyclones, the intensity with respect to 

maximum wind speeds and rate of rainfall is likely to increase (Kopp et al., 2019).  Changes in 

tropical cyclone frequency, wind speed, and tracks remains an area of active research (Kopp et 

al., 2019). The scientific consensus regarding changes in the frequency of wind speed, 

precipitation rate, and tracks of extratropical cyclones remains an active discussion (Kopp et al., 

2019).   

When coupled with rising sea level, the historic and projected increase in severity of 

storm surge is likely to increasingly affect coastal forests, defined below, in the mid-Atlantic and 

southern New England states of the U. S. (USGCRP, 2018). In a recent assessment of the 

vulnerability of these forest ecosystems to future climate change, two specific forest 

communities, maritime forests and tidal swamps of the coastal plain, were rated as having high 

to moderate-high vulnerability (Butler-Leopold et al., 2018). 

The coastal forests of the mid-Atlantic and southern New England states are commonly a 

mix of deciduous hardwoods and evergreen conifers with the species composition dependent 

upon the site level soil moisture gradient and coarser scale latitudinal gradients in species ranges 

(Anderson et al., 2013a; Butler-Leopold et al., 2018; Janowiak et al., 2018). Drier upland forests 

are dominated by a diversity of oaks (including white (Quercus alba), southern red (Q. falcata), 

scarlet (Q. coccinea), and black (Q. velutina)) and pines (including pitch (Pinus rigida), loblolly 

(P. taeda), Virginia (P. virginiana) and shortleaf (P. echinata)) (Anderson et al., 2013b). The 

wetter end of the gradient is dominated by red maple (Acer rubrum), black gum (Nyssa 

sylvatica), American Holly (Ilex opaca), loblolly pine (at southern end of region), pitch pine (in 
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the central portion of the region) and Atlantic White Cedar (Chamaecyparis thyoides) (Anderson 

et al., 2013b). The transition zone between the salt marsh and adjacent forest is often comprised 

of common reed (Phragmites australis, henceforth referred to as Phragmites), marsh elder (Iva 

frutescens), highbush blueberry (Vaccinium corymbosum), and eastern red cedar (Juniperus 

virginiana) (Anderson et al., 2013b). The forests serve as habitat to a diversity of rare plants and 

animals including a number of species of concern (Global Rank G1-G4) (Anderson et al., 

2013b). Federally or state listed species include the swamp pink (Helonias bullata), rose 

coreopsis (Coreopsis rosea) and cypress swamp sedge (Carex joorii) among others (Anderson et 

al., 2013; USDA NRCS Plants Profile). Other ecosystem services include carbon storage 

(McGarvey et al., 2015, Fahey et al., 2010), valuable timber resources, and, in concert with 

adjacent salt marshes, protective buffering of inland areas against coastal storms (Williams et al., 

2003; Barbier et al., 2011; Duarte et al., 2013).  

Various studies have documented that these coastal forests are showing signs of stress 

evidenced by trees at the forest-tidal salt marsh edge dying back and the forests transitioning into 

tidal salt marsh ecosystems (Kirwan and Gedan, 2019; Smith, 2013; Sacatelli, 2020). These areas 

have been dubbed “ghost forests” denoting the presence of standing dead trees within or fringing 

the edge of salt marsh ecosystems (Kirwan and Gedan, 2019; Able et al., 2018; Able, in review). 

While this phenomenon of coastal forest dieback and replacement with salt marshes as sea level 

rises has been ongoing for millennia (Clark, 1986), the concern prompting this assessment is that 

accelerating sea-level rise and intensifying coastal storms will further hasten this process. 

Based on our review of the peer-reviewed literature and interviews with scientific 

experts, a conceptual model was developed identifying the key driving processes, mechanisms, 

and ecosystem responses and their linkages (see Figure 1). Climate change and attendant effects 
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on sea-level rise and storm frequency and intensity represent the ultimate driver of the system. 

These climate drivers initiate a chain of proximate mechanisms that are operating at both shorter 

term decadal time scales and longer term processes working over centuries to millennia (Able et 

al., 2018). Figure 2 illustrates two proximate mechanisms associated with rising sea levels that 

appear to be especially significant: a rising groundwater table and periodic inundation by saline 

water. These mechanisms change soil conditions along the upland fringe leading to accelerated 

tree mortality. These same proximate mechanisms also affect subsequent vegetation community 

dynamics following tree dieback. It is expected that an acceleration of sea-level rise rates will 

further intensify the effects of these mechanisms either singly or in concert. Over longer time 

scales, the marsh-forest ecotonal boundary or the transition zone shifts landward as sea levels 

steadily rise and salt marsh vegetation gradually invades the dead or dying forest.  

Anthropogenic factors such as ditching due to mosquito management are included as external 

factors that can heighten or constrain the intensity of these mechanisms.  

The following review of the peer-reviewed literature explores these mechanisms and 

ecosystem responses along the mid-Atlantic and southern New England seaboard of the U.S. and 

synthesizes additional insights provided in interviews with experts in the field. Gaps in scientific 

understanding are highlighted based on expert interviews as well as discussions held at a January 

2020 workshop of scientists and land managers. Finally, we examine several techniques for 

managing coastal forests to reduce the impacts of climate change.  
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Figure 1.  A concept map summary of processes controlling forest edge migration as compiled from relevant literature. The blue 
color denotes the ultimate drivers of change. Green denotes proximate mechanisms of change. Red denotes external 
anthropogenic factors that have a role in change. Purple is the ecosystem-level response that occurs due to the changes in the 
controlling processes. 
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Figure 2. The baseline for coastal flooding rises as sea level rises, bringing further inland daily/monthly tidal flooding, 
periodic storm surges, and the fresh/saline transition zone in shallow groundwater. Over time, the further inland reach of 
storm surges results in coastal forest dieback (referred to as ghost forests because of still standing dead trees). Rising sea 
levels also raise the water table tens to hundreds of meters inland from tidal waters, resulting in a thinning vadose zone such 
that the water table is closer to the ground surface. The resulting saturated soils stress existing vegetation and can ultimately 
convert forested wetlands to standing-water wetlands with accompanying forest dieback. Not shown but also important: near-
shore, low-lying freshwater wetlands become brackish as storm surges reach farther inland and the shorter interval between 
storm surges results in less dilution between events by precipitation and groundwater flow. Note: drawing not to scale. 
(Graphic credit: Karrah Kwasnik, US Department of Agriculture; Glen Carleton, US Geological Survey; Richard Lathrop, 
Marjorie Kaplan, and Rachael Sacatelli, Rutgers University).  
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Literature Review 

The dieback of the forest ecosystem at the salt water tidal marsh edge (or marsh/forest 

ecotone) and transition to tidal salt marsh ecosystems is referred to in the literature as the 

migration (or transgression) of the salt water tidal marsh or coastal forest (Kirwan and Gedan, 

2019, Hussein, 2009; Smith, 2013; Schieder et al., 2018; Sacatelli, 2020). The concern, 

mentioned above, that this migration will be hastened by accelerating sea-level rise and 

intensifying coastal storms is due to the link between the vegetation communities and specific 

physical environmental factors (Proximate Mechanisms in Figure 1). Therefore, to understand 

the impact that changing storm surges and rising sea level has on the forest ecosystem, it is 

instructive to first examine the relationship between the physical environment and vegetation 

zonation. 

Physical Environment and Vegetation Zonation 

The hydrology of the Northeastern US tidal salt water marsh and coastal forest landscape 

is complex. Precipitation leads to fresh water recharge of surficial aquifers that flows from 

inland/upland recharge areas to discharge areas in freshwater wetlands and streams, brackish 

estuaries, and saltwater wetlands and water bodies. In coastal areas, less dense fresh groundwater 

discharging to saltwater wetlands or water bodies flows over denser saline water.   

The salinity of groundwater can be influenced by mixing with adjacent tidal saline water, 

by underlying denser saline water, and/or infiltration of saline water that inundates land surface 

during exceptional high tides and storm surges.  In inland areas of coastal forests, freshwater 

recharge and inflow of fresh groundwater from upland areas result in a freshwater-only 

environment. In coastal areas, fresh groundwater discharges over denser saline water and there is 

typically a transitional mixing zone of varying salinity.  Tidal salt marshes often have complex 
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interactions of fresh and saline water, with fresh groundwater discharging through the salt marsh 

at low tide and saline water inundating the marsh surface at high tide (Barlow, 2003).   

The interactions of fresh groundwater recharge from precipitation, fresh groundwater 

discharge to tidal waters, saltwater inundation over the land surface, and fresh river flow into 

estuaries have important implications for soil and vegetation of the lower northeastern salt marsh 

and coastal forest landscape (i.e., Ecosystem Response in Figure 1). Salinity of water in the 

rooting zone, or pore water, is a critical factor affecting the coastal forest ecosystem. Moving 

from the marsh-forest boundary into the coastal forest, the pore water salinity changes and is 

influenced by a combination of precipitation, groundwater flow from upland areas, salt 

deposition from marine aerosols (especially during storms), overland saltwater inundation from 

extreme lunar tides and storm surges, and evapotranspiration (Wilson et al., 2015; Wells and 

Shunk, 1938).   

The high flooding frequency in the lower elevations leads to highly saline pore water 

conditions and therefore are often colonized by salt-tolerant (i.e., halophytic) graminoid and 

herbaceous plants to form salt marshes. Further inland/upslope where tidal flooding is infrequent, 

the influence of precipitation and groundwater becomes the driving factor controlling pore water 

salinity in the unsaturated zone1 (Barlow, 2003) and creates soil characteristics that allow trees to 

germinate and grow.  These fringing forests may be comprised of species that have a moderate 

degree of salt tolerance (such as eastern red cedar, Juniperus virginia or the American holly, Ilex 

opaca) (USDA 2002a; USDA 2002b) and are able to tolerate occasional storm-driven salt spray 

                                                           
1 The unsaturated zone is the portion of the subsurface above the ground water table. The soil and rock in 
this zone contains air as well as water in its pores. Hydrologically, the unsaturated zone is often the main 
factor controlling water movement from the land surface to the aquifer. See “USGS Groundwater 
Information: Unsaturated Zone” available at http://water.usgs.gov/ogw/unsaturated.html 
 



 
 

 
 

12 

(a few times per year) (Appleton et al. 2009). Where saltwater inundates the coastal forest during 

extreme storm or tidal events, pore water and shallow groundwater salinity increases from the 

pulse of saltwater and then gradually decreases as freshwater infiltration from precipitation and 

horizontal flux from higher-elevation freshwater-recharge areas inland serve to dilute the 

salinity. Farther inland, coastal wetland forests may be comprised of species that have low salt 

tolerance and would not survive extensive salt spray or saline soils from an inundation event 

despite the eventual dilution of the soil salinity (Appleton et al., 2009).   

This variation in salinity of the pore water, normal tidal flooding extent, and storm surge 

flooding frequency influence the spatial distribution of vegetation communities in the 

marsh/forest ecotone (Strange et al., 2008; Barlow and Reichard, 2010).  Due to variation in the 

salt and soil saturation tolerances of individual plant species, lateral salinity changes and 

flooding conditions combined with the intense competitive relationships of the species within 

these habitats creates well-delineated vegetation zones (Bertness, 1991; Bertness and Ellison, 

1987, Strange et al., 2008). The strong links between flooding frequency, pore water salinity, and 

soil saturation are key factors in determining the spatial distribution of coastal vegetation 

communities and the location of the marsh-forest ecotone (Figure 1). 

Potential Proximate Mechanisms Controlling Forest Dieback 

The strong link between the soil characteristics and flooding frequency to the location of 

the various vegetation communities in the salt marsh/coastal forest landscape of the lower 

northeast makes these communities vulnerable to changes in these environmental factors. As 

discussed above, the vegetation communities have specific ranges of these environmental factors 

in which they can be successful both due to the species tolerances of these factors and 

competition between vegetation communities. If the soil moisture, soil salinity, or flooding 
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frequency changes, the vegetation communities, including the coastal forest, may no longer be 

able to inhabit their historical locations. In this section we will discuss how these environmental 

factors are currently changing due to a combination of sea-level rise and other anthropogenic 

factors and how these changes effect the coastal forest ecosystem.  

Soil Saturation and Groundwater 
In coastal locations where inland groundwater discharges directly to tidal marshes and 

water bodies (as opposed to non-tidal, higher-elevation streams and wetlands), groundwater level 

rises as sea-level rises (Bjerklie et al., 2012; Knott et al. 2019).  Rising groundwater levels 

reduce the thickness of the unsaturated zone (reduce the depth to groundwater). With the fresh 

groundwater table closer to the surface there is an increasing incidence of saturated soil 

conditions in low-lying coastal areas (Nuttle and Portnoy 1992; Masterson et al., 2013). If the 

unsaturated zone decreases, the soil in the rooting zone of the coastal forest maybe become 

saturated. Saturated soil greatly limits the amount of oxygen that tree roots can obtain. The 

absence (anoxia) or near absence of oxygen in the soil (hypoxia) can also promote the growth of 

anaerobic bacteria that may produce conditions toxic to plants (Whitlow and Harris, 1979). Most 

trees can withstand a few days of fresh water flooding during the growing season but extended 

flooding conditions affects plant growth, development and survival (Kozlowski, 1997; Parent et 

al., 2008).  While riparian tree species (i.e., tree species adapted to floodplains or freshwater 

swamp environments) tend to be more tolerant of saturated soils and the resulting anoxic 

conditions than upland species (Whitlow and Harris, 1979; Kozlowski, 1997; Kramer et al. 

2008), very few riparian or wetland tree species can withstand extended soil inundation 

(Kozlowski, 2002).  
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Raphael (2014) documented longer term shifts in the vegetation composition of the 

maritime forest growing on the dune and swale topography of Fire Island, NY. The American 

Holly-dominated forest (Ilex opaca) in the swale depressions are experiencing increasing 

mortality in the tree canopy layer and limited seedling/sapling recruitment, which Raphael 

(2014) attributed to increasingly saturated soil conditions from thinning of the unsaturated zone 

which brings the ground water system closer to the ground surface. Similarly, in a loblolly pine-

dominated coastal forest in Maryland, Kirwan et al. (2007), documented an absence of 

recruitment of new pines despite abundant seedlings and an open canopy, suggesting that the 

recruitment ability appears to be limited by saturated soils. Given that rising sea levels are 

leading to higher ground water tables and saturated soil conditions in low-lying areas (Figure 1), 

this process is likely a slow but steady contributor to coastal forest dieback (Kirwan et al., 2007; 

Masterson et al., 2014; Fagherazzi et al., 2019).   

Soil Salinity and Severe Storms 
Severe storms coupled with increased sea-level rise increase the magnitude and longevity 

of storms (USGCRP, 2018; Woodruff, et al., 2013, Sweet et al., 2017a). Storm surge-related 

surface inundation of saltwater can intensify the soil pore water salinization, (Fagherazzi et al., 

2019). The impact of this influx of saline water can last for several years after the storm (Dai et 

al., 2011). Increases in salinity of the pore water can directly limit vegetative growth and cause 

other changes in soil chemistry (Figure 1). The increased salinity can stress the coastal forest 

vegetation causing leaves to brown (i.e., scorch) or fall and decreases both water uptake and the 

organism’s nutrient metabolism, negatively affecting the trees’ growth rates (Kozlowski, 1997; 

Fernandes et al., 2018). Higher soil salinity levels can also increase the solubility of minerals and 

other solutes, altering biogeochemical cycles (Herbert et al., 2015; Hopfensperger et al., 2014). 
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Increasing salinity levels affect nitrogen uptake, denitrification, and carbon mineralization rates 

in experimentally manipulated forest soils (Craft, 2012; Marton et al., 2012; Ardón et al., 2013; 

Ardón et al., 2018; Jun et al., 2013) which may also impact the health and growth of trees. 

Locations that are inundated by saltwater for extended periods or several times per year may 

have salinity high enough/long enough to kill trees whereas locations that are briefly inundated 

by a storm tide once every few years may have transient salinity beneath the fatal threshold for 

trees (McKee et al., 2016; Holt et al., 2017).   

Stalter and Heuser (2015) documented the effect of Superstorm Sandy on American 

Holly trees (Ilex opaca) on Sandy Hook, New Jersey.  Hollies growing on lower dune ridges that 

were inundated by surge waters experienced 50-75% initial leaf loss followed by 85% leaf 

recovery. Hollies growing in salt water-filled depressions were killed (Stalter and Heuser, 2015). 

Atlantic white cedar (Chamaecyparis thyoides) are especially susceptible to storm surge salt 

water inundation with extensive diebacks of entire stands following storms (USDA Forest 

Service, undated).  In 2012, Superstorm Sandy affected Atlantic white cedar swamps growing in 

the coastal margin of New Jersey (Figure 3).   

Salinity stress is especially evident in tree seedlings as seedlings have a much higher 

sensitivity to changes in salinity as compared to their full-grown counterparts (Kearney et al., 

2019). Seedlings of common coastal tree species, such as red maple (A. rubrum), were found to 

be highly sensitive to saltwater flooding with height and diameter growth significantly reduced 

(Conner and Askew, 1993). Work on the west coast of Florida by Williams et al. (1998) 

suggested that the inability of young seedlings to resprout after storm surge-related inundation 

hindered subsequent tree establishment at the extreme seaward margin of the forest. This 

phenomenon may also apply to Northeastern coastal forests but has not been demonstrated to  
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Figure 3: Example of forest dieback near Cattus Point, Barnegat Bay, New Jersey Showing Atlantic White Cedar dominated 
swamps undergoing both longer term gradual dieback with replacement by Phragmites and an Extreme dieback event related 
to the Superstorm Sandy storm surge.  
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date. The net effect of higher soil salinity in the coastal forest is stressed trees with limited to no 

regeneration potential (i.e., Forest Health and Regeneration in Figure 1) (Fagherazzi et al., 2019; 

Kearney et al., 2019).  

In addition to changing soil salinity, the extreme winds of severe storms can damage the 

coastal trees by causing breakage, defoliation, and uprooting (Merry et al., 2009). The extreme 

winds can also increase salt spray which can lead to leaf scorch which can cause partial or 

complete defoliation (Moss, 1940). Floating debris transported by waves during severe storms 

can come in contact with the trees and can cause damage the trees’ cambium, negatively 

affecting nutrient transport within the tree (Stoffel et al., 2010). These damages combined with 

the stress caused by the increased soil salinity can lead to mortality of the stressed stand 

(Fernandes et al., 2018; Conner and Inabinette, 2003; Fagherazzi et al., 2019). The repercussions 

of these storm events increase dramatically if more than one storm occurs in successive years 

(Douglas et al., 2018).  

The proximate mechanisms of higher groundwater tables and periodic storm surges 

appear to work in concert in driving coastal forest dieback. Fagherazzi et al. (2019) have posited 

a “ratchet” model that combines the gradual “press” disturbance of sea-level rise with the 

intermittent “pulse” disturbance of storms. In many respects, our conceptual model (Figure 1) 

shares many similarities with Fagherazzi et al.’s (2019) ratchet model. One subtle distinction is 

that our model places a greater emphasis on the role of rising groundwater levels in increasingly 

stressing the forest vegetation and decreasing regeneration potential.  As in both models, 

episodic storm surges may then exceed the salinity or saturation tolerances of existing trees 

leading to a wave of mortality that leaves the site inhospitable to subsequent regeneration.  
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Coastal Forest Edge Migration and Location 

The migration of the marsh-forest ecotone has been documented at several locations 

across the mid-Atlantic and southern New England coast (Hussein, 2009; Smith, 2013; Schieder 

et al., 2018; Field et al, 2016; Sacatelli, 2020). The rates of coastal forest dieback vary widely 

with respect to local conditions. Schieder et al (2018) documented an average forest dieback rate 

of 0.5 m/yr for the entire Chesapeake Bay shoreline over the past 100+ years but found that the 

local rates of dieback range from 0.1 m/yr to 2 m/yr over the same timeframe. The dieback rate 

for two sites near Blackwater National Wildlife Refuge on the Chesapeake Bay coast has been 

documented by Hussein (2009) to have average rates at over 3 m/yr and 6 m/yr.  Further north, 

Smith (2013) documented an average of 141.2 m of movement inland of the marsh-forest 

ecotone over 76 years for sections of the Delaware Bayshore of New Jersey, (or an average rate 

of 1.8 m/yr). For a study area in southern New England, Field et al. (2016) found very little tree 

mortality in the marsh forest ecotone despite observing shifts in the adjacent marsh vegetation 

community towards an increase in low marsh and a decline in high marsh. The spatial variation 

in the rate of forest dieback suggests that relative influence of the proximate mechanisms and 

consequent ecosystem responses (in Figure 1) are highly dependent on local conditions. The 

impact of the increasing salinity and saturation of the soils not only may vary geographically due 

to differences in subsurface geology, soil type, terrain slope, and landscape configuration but 

also there may be additional mechanisms that play a role in marsh migration.  

Knowledge Gaps  

The following section reflects discussions with leading experts in this field. These experts 

shared preliminary research findings and opinions during interviews and the workshop 

convening in January 2020. The compiled knowledge gaps fall into three categories: the 
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intricacies in the mechanisms of change; the biological responses and tolerances to these factors; 

and how these mechanisms and responses vary spatially. 

Understanding the Proximate Mechanisms of Coastal Forest Edge Migration  

Episodic storm surge-related surface inundation of saltwater can cause soil salinization, 

soil oxygen depletion and changes in soil chemistry. The magnitude and duration of the salinity 

changes in the pore water, and the effect on common Northeastern coastal forest trees deserves 

further research. Given that some coastal tree species have limited tolerances to fresh water soil 

saturation (Parent et al., 2008), higher levels of tree mortality and/or lower regeneration potential 

may be the result of overly saturated soils and not the salinization of the soils. More research on 

the magnitude, as well as the spatial and temporal variability, of these driving processes (soil 

saturation vs. soil salinization), either singly or in combination, is needed.   

 The legacy of earlier land use alterations on either intensifying or ameliorating the 

proximate mechanism causing coastal forest dieback is unclear (i.e., Anthropogenic Factors in 

Figure 1). Ditches have been widely used along the coast to increase drainage for either farming 

or mosquito control. In the mid-Atlantic and southern New England, parallel ditching on 90% of 

the tidal marshes between Maine and Virginia was completed by 1938 in an attempt to curb the 

large salt marsh mosquito population to address public health concerns (Bourne and Cottam, 

1950). Increasing drainage on the marsh causes less standing water, and therefore less mosquito 

breeding locations (Wolfe, 1996). Other areas of the marsh were both diked and ditched to 

promote the production of Spartina patens (salt hay). Spartina patens grows best in the higher 

marsh elevation zone where tidal flooding and salinity levels are reduced. To create more 

suitable habitat, farmers diked marshes to reduce tidal flooding and ditched them to drain the 

saturated soils to a moisture level optimal for Spartina patens growth (Hinkle and Mitsch, 2005).  
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The presence of dikes and ditches may play a large role in the way the present marsh and 

upland ecosystems react to a rising sea level. The dikes limit sediment flux into the marsh 

thereby lowering the marsh accretion rate and creating elevation deficits in the marsh relative to 

rising sea levels.  Ultimately, the affected marsh sits at a lower elevation in the tidal frame than 

other non-diked marshes (Smith et al. 2017). This may make the diked marshes more vulnerable 

to sea-level rise once the dikes have been breached and saline water once again flows into the 

marsh unrestricted. Adjacent areas of forests may likewise be more susceptible to saline 

intrusion. The ditches may become pathways for saline water to more easily reach interior marsh 

or adjacent forests, leading to more rapid change at the marsh/forest ecotonal boundary.  

Groundwater discharging into ditches locally lowers the water table: groundwater flows 

from higher to lower head (hydraulic pressure) and a shorter flow path requires less gradient to 

move the water (Harvey and Odum, 1990).  Ditches near the upland edge of salt marshes might 

locally lower the water table and increase the rate that transient inundation events are flushed 

from the adjacent forested areas or increase the number and severity of inundation events by 

creating a pathway for surface-water flow during storm surges.  Better understanding the 

implications of these common human alterations to the marsh may inform potential restoration 

approaches for previously diked or ditched marshes, and likewise, suggest the potential utility of 

dikes or ditches as a management tool. 

The human impact on this system may extend to groundwater pumping of adjacent 

freshwater aquifers. Groundwater pumping for drinking water or agricultural uses close to the 

marsh/forest ecotone may lead to increased saltwater intrusion of the groundwater (Reilly and 

Goodman, 1987; Ferguson and Gleeson, 2012).  If a fresh groundwater pumping well is 

positioned above the freshwater-saltwater interface, the pumping of fresh water out of the aquifer 
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can result in upward vertical intrusion of salt water, known as upconing (Reilly and Goodman, 

1987; Ferguson and Gleeson, 2012). The anthropogenic saltwater intrusion occurring may, in 

some circumstances, affect coastal forests. Extensive groundwater pumping can also exacerbate 

land subsidence and subsequently increase sea-level rise rates locally (Sun et al., 1999). This 

increase in local sea-level rise rates could accelerate repercussions of changes in other processes 

that are linked to sea-level rise. The groundwater pumping regime can be modified to ameliorate 

these impacts.  

Understanding the Physiological and Ecological Response to Changes in Proximate 

Mechanisms of Coastal Forest Edge Migration 

 A deeper understanding of the physiological and ecological responses of coastal forest 

vegetation to a changing physical environment such as soil salinity and saturation is needed. As 

mentioned above, it is unclear the extent to which tree dieback observed at the forest margin is 

due to salt intolerance, freshwater flooding, or a combination of both. Both mechanisms may 

vary in importance spatially and/or temporally. A field experiment approach might be very 

valuable in elucidating the individual and/or synergistic effects of the mechanisms under 

different conditions. Additionally, investigating whether ecological factors such as species 

composition and competition impact how the proximate mechanisms effect the system both in 

conjunction with, and independent of location. While it is generally understood that different 

species of woody plants have varying susceptibility to saturated or saline soils, better 

documentation of the range in tolerance of common Northeastern U.S. coastal tree and shrub 

species is needed. This information may lead to a better understanding of the mechanisms 

operating at a site as well as inform management.  
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 Plant community zonation patterns in the marsh/upland ecotone have been altered with 

introduction of the non-native common reed, Phragmites australis.  This non-native genotype 

was introduced to the mid-Atlantic in the early 1900s and now occupies the upland edge of most 

salt marshes in this region (Mozdzer et al., 2013). Phragmites reproduces both by clones and 

seed dispersal (Hazelton et al., 2018), readily invades any habitat within its growth tolerance 

range, and is known for establishing quickly and flourishing in disturbed habitats (Rice and 

Rooth, 2000; Bart and Hartman, 2000; Chambers et al., 1999). These characteristics make 

Phragmites a highly invasive species and can result in dense monocultures within its range that 

extend from marsh edge to the edge of the coastal forest occasionally intermingling with coastal 

forest shrub species such as marsh elder (Iva frutescens) before transitioning to a solely coastal 

forest shrub and tree community. (Chambers et al., 2003; Windham and Lathrop, 1999; 

Windham, 2001). Phragmites is also a very hardy plant (Engloner, 2009) and can likely 

withstand some of the changes in pore water and saturation that are occurring due to the rise in 

sea level as well as any episodic flooding that occurs from storm surge. These characteristics 

allow Phragmites to readily invade into areas of forest dieback at the marsh/forest ecotone 

(Smith, 2013; Sacatelli, 2020; Able et al. 2018).  As forest trees die, Phragmites can quickly 

monopolize these canopy openings and shade out tree and shrub seedlings, thereby limiting 

forest regeneration, especially if an adjacent Phragmites stand is well established before the 

mortality occurs. However, Phragmites has lower salt-tolerance than some marsh species such as 

Spartina patens (Moore et al., 2012). Because pore water salinity increases towards the marsh 

shoreline edge in these coastal wetlands, Phragmites is only able to invade seaward until 

salinities reach a threshold where it is out-competed by the more salt-tolerant S. patens or D. 

spicata. The degree to which Phragmites is limited to hydric soils or sufficient light levels in an 
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upland environment is less clear. There is some evidence that Phragmites could both accelerate 

forest loss and hinder subsequent replacement by native marsh grass. Understanding the nuances 

of the Phragmites invasion, the inhibiting effect it might have on forest regeneration, and the 

eventual consequences on salt marsh expansion can lead to better management of the ecotone. 

The effect of other invasive species on forest health must also be considered. For 

example, Dendroctonus frontalis (southern pine beetle) has expanded into areas of New Jersey, 

New York, and Connecticut (Lesk et al., 2017). D. frontalis is particularly attracted to Pinus 

rigida (pitch pine), Pinus taeda (loblolly pine), and Pinus echinata (shortleaf pine) which occupy 

many of the coastal forests in the mid-Atlantic and southern New England (Anderson and 

Doggett, 1993). With increasingly warmer winters that may become typical of this region, D. 

frontalis may become more and more of a concern for coastal forests. The presence of pests like 

D. frontalis may cause greater damage at the marsh-forest ecotone if the trees are already under 

stress from changes in groundwater, soil salinization or have sustained storm surge damage. 

Conversely, pests may weaken the trees making them more susceptible to subsequent storm 

surge flooding, and thereby leading to greater mortality than may not have occurred otherwise.    

Understanding the Spatial Variation in Coastal Forest Edge Migration 

 While various studies documenting rates of coastal forest dieback have been conducted at 

several locations in the Mid-Atlantic and southern New England (Smith, 2013; Hussein, 2009; 

Schieder et al., 2018; Sacatelli, 2020), a more comprehensive regional-scale analysis of coastal 

forest dieback and marsh migration would lead to a better understanding of the scope of this 

phenomenon. Such regional quantification of forest productivity changes or losses would provide 

better estimates of the tradeoffs and loss of ecosystem services.  
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Additionally, depending on geographic location and landscape features such as elevation, 

the key mechanisms of forest dieback and marsh migration may vary from site to site. Therefore, 

each of the identified knowledge gaps must be explored with respect to location. The 

identification of key drivers in a spatial context would allow for more comprehensive modeling 

of future forest dieback under various sea-level rise scenarios. While models of marsh migration 

and forest dieback have been created (e.g., SLAMM (Warren Pinnacle, 2016)), the refined 

parameterization of these models based on more detailed knowledge of the causal mechanisms is 

needed.  

Summary of Knowledge Gaps and Future Research Needs 

• Intensive in situ measurement of the variation of groundwater depths and salinity levels 

across the marsh to forest ecotone in geographically varied sites: testing differences 

between altered (sites that are diked or ditched) vs. unaltered (or less altered) marshes, 

and other experimental designs to elucidate the effects of adjacent groundwater pumping. 

• Response of soil pore water and soil chemistry at the marsh-forest ecotone due to the 

changes in salinity and depth to the groundwater and the spatial variability of those 

changes in geographically varied sites:  altered (sites that are diked or ditched) vs. 

unaltered (or less altered) marshes, and in the presence of adjacent groundwater pumping. 

• Salinity and saturation physiological tolerances of important coastal tree and shrub 

species, as well as the ecological consequences of species-specific tolerances across 

broader landscapes. 

• Southern pine beetle and other pests’ effect on the rate of marsh-forest ecotonal 

migration. 
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• Better understanding of the degree to which different proximate mechanisms operate 

singly or in combination under different environmental/terrain conditions and vegetation 

community compositions in affecting forest dieback and the rate of marsh-forest ecotonal 

migration.  

• Controlled studies of Phragmites invasion (i.e., shade tolerance, salinity tolerance, 

competition between Phragmites and forest species and between Phragmites and high 

marsh species). 

• Comprehensive mapping and intensive in situ and remotely sensed observation of the 

spatial extent, composition, and rate of forest dieback at geographically varied sites: 

altered (sites that are diked or ditched) vs. unaltered (or less altered) marshes, and in the 

presence of adjacent groundwater pumping. 

• Comprehensive modeling and characterization of the potential dieback of coastal forests 

at the marsh-forest ecotone under various scenarios of sea-level rise and future time 

frames across the Northeastern U.S. region. 

Management 

 The consensus of the scientists and managers at the January 2020 convening of experts 

was that much of current management focuses on protecting or assisting the salt marsh 

ecosystem and comparatively less attention has been paid to specifically managing the adjacent 

forest ecosystem. Maintaining eroding marsh shoreline edges through “living shorelines” 

restoration techniques, enhancing vertical accretion rates of the marsh platform via thin layer 

deposition of dredge spoil sediments, and increasing drainage in ponded marsh interiors are all 

examples of techniques that are focused primarily on the management of the salt marsh (Wigand 
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et al., 2017). These marsh management techniques may have some positive value in slowing the 

negative impact of sea-level rise to adjacent forest ecosystems, though these effects have not 

been well documented.  

Mitigating forest losses as a management goal has particular merit for protecting 

biodiversity but being specific about the strategy for this mitigation is important. There are two 

possible strategies to protect the forest ecosystem: to maintain the existing upland forest in-place 

or to manage the forest as it responds and retreats inland in response to marsh expansion.  The 

following discussion of possible management practices applicable to coastal forest dieback, 

facilitated by the contributions of scientists and land managers working within the salt 

marsh/coastal forest system, has been organized into three main topics: hydrological, vegetation 

community, and migration preparation. Depending on the management strategy, it may be 

possible to manipulate both the hydrology and vegetation communities to push the system in the 

desired direction. Many of these concepts can potentially be used to either assist or hinder forest 

migration.  

Due to the spatially variable nature of the proximate mechanisms  (Figure 1), identifying 

which mechanisms may be dominant at a specific site and understanding the possible synergistic 

effects among mechanisms helps illuminate the potential outcomes of a given management 

strategy. For example, a management practice might be useful in ameliorating the short-term 

effects of a storm surge event but may be ineffective in responding to a longer-term rise in the 

water table that has exceeded a given threshold. Site-specific information will ideally help create 

more effective management plans as well as curb the number of unintended consequences. 

However, adequately teasing out the site-specific proximate mechanisms may be difficult and 

expensive, resulting in a lack of information that makes decisions as to the most appropriate 
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management response challenging. A goal moving forward should be consideration of marsh and 

adjacent forests as an integrated system and further alignment of management objectives for 

both.  

Hydrological Management 

 Manipulation of a site’s hydrology to maintain optimal conditions for the existing 

community of tree species might be an option at a particular site. As mentioned earlier, the 

ditching of a salt marsh can be used to alter the hydrology of the marsh and by extension, the 

adjacent coastal forest ecosystem. Depending on the site conditions, ditches can be either filled 

to limit flooding or expanded to increase drainage. A study of marsh sites in New England by 

Vincent et al. (2013) found that the filling of ditches decreased sediment flux into the marsh and 

subsequently lowered accretion rates. Lower accretion rates create marsh instability, which could 

have consequences for coastal forest stability. Elsewhere, increased ditching has been used in an 

attempt to drain ponding of the interior marsh platform and thereby enhance revegetation 

(Wigand et al., 2017). The decision to fill or deepen ditches may be a question of which 

management goal is prioritized for the given area of concern.  

The use of engineered infrastructure designed to create a local barrier to sea-level rise or 

protect the salt marsh/coastal forest ecosystems from storm surge are costly, require 

maintenance, and will need to be adjusted as the conditions continue to change, but might be 

applicable in select situations. Tide gates are regulated openings through which water may flow 

freely when the tide moves in one direction, but which close automatically and prevent the water 

from flowing in the other direction. Coupled with dikes and levees, tide gates have a long history 

of use in salt hay farming, mosquito control, and protection of assets from storm surges. Such an 

all-or-nothing approach may be useful in maintaining the existing marsh-forest ecotonal 
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boundary for some time but can lead to unintended negative consequences. In a New England 

marsh, the reduction of tidal flow stemming from the use of tide gates led to drying of the marsh 

soils, and in turn has created habitat that is ideal for the expansion of Phragmites (Roman et al., 

1984, Roman et al., 1995).  Analysis of historical aerial photography documents where dike 

systems have been breached with catastrophic consequences to the marsh and forest behind them 

(Sacatelli, 2020). Sacatelli (2020) documented that the 1970s dike breach in Delmont, NJ, 

resulted in marsh loss and forest dieback up to 540 meters inland by 2015.  

More sophisticated tidal modification systems are widely used in Europe. Regulated 

Tidal Exchange (RTE) is a system of tide gates or sluices that are used to control the amount of 

water entering an area that is surrounded by seawalls or embankments (Masselink et al., 2017). 

This technique is used to restore tidal flow to mudflats and salt marshes as part of broader coastal 

protection strategies in the face of sea-level rise and storm surges (Environment Agency, 2003; 

Masselink et al., 2017).  Controlled Reduced Tide (CRT) technique uses a system of inlet and 

outlet sluices that are designed to passively control tidal flows into an area surrounded by a sea 

wall or embankment (Meire et al., 2005; Maris et al., 2007). While projects using RTE and CRT 

systems have focused on salt marsh maintenance/restoration, their application with the express 

purpose of slowing the effect of rising sea-levels on coastal forests is a potential area for further 

exploration. Further, these tidal flow control technologies are costly as they need to be designed 

and implemented at a scale broad enough to be effective and require continued maintenance.  

Vegetation Community Management 

 Regardless of the desired management goal, some form of active vegetation management 

would be integral to management plans. If the management goal is to maintain the coastal forest 

in place, then best management practices that promote the replacement of the existing vegetation 
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with species better adapted to the new environmental conditions may be required. For example, 

planting of more salt and flood tolerant tree species may be key to maintaining a forest 

ecosystem in light of changing salinity and saturation conditions. The control of Phragmites may 

be necessary to reduce competitive interactions and thereby promote the natural establishment 

and/or facilitate the growth of the planted trees/shrubs. Prescribed burning and application of 

herbicides together, have shown to be effective measures to control Phragmites (Thompson and 

Shay, 1989; Cross and Flemming,1989). Attempting to minimize forest dieback and maintain a 

forest may be feasible in the short term (i.e., over several decades) but in the face of intensifying 

sea-level rise, will inevitably be a losing proposition in some locations over the long term (i.e., 

over 50 to 100 years). Adopting some form of adaptive management that incorporates active 

monitoring of forest health would be a requisite.  

Planning for Marsh-Forest Ecotone Migration  

 If the management goal is to preserve coastal forest yet acknowledge the need for marsh 

ecosystems to migrate into current upland habitats, it then becomes important to protect the 

existing inland extent of the coastal forest and potentially facilitate the expansion of forest inland 

into areas that are presently non-forested (i.e., sometimes referred to as managed retreat). Rather 

than trying to protect the coastal forest in place, the emphasis is shifted to ensuring a “no net 

loss” of coastal forest at a broader regional scale.  

Strategic land conservation via acquisitions or easements is one way to ensure that forest 

ecosystems are not being lost on the inland edge from development adding to losses on the 

seaward side from sea-level rise or storm surge (Maryland Department of Planning, 2019). Many 

states in the region have land acquisition programs and/or easement programs for different 

habitat types that could be used as mechanisms to facilitate management for coastal forests. 
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Examples include the State of New Jersey’s Green Acres Program and the State of Maryland’s 

Greenprint program. Protecting or restoring land adjacent to the coastal forest may allow for 

migration or expansion of coastal forest habitat. This restoration or protection would assist in 

maintaining coastal forests and coastal forest species closer to their historical area of habitat. 

Target areas for this kind of management could include undeveloped land adjacent to coastal 

forests or areas adjacent to already conserved properties.  Conserving or actively restoring forest 

habitat, even a small amount, on the inland edge of the coastal forests could offset some of the 

losses on the seaward edge.  

These acquisition or easement strategies could also assist in a separate management 

strategy of maintaining the habitat value of the coastal forest. Increasing the habitat connection 

between existing forests, both coastal and inland, can help facilitate the migration of vegetation 

and wildlife as the seaward edge is lost (Maryland Department of Planning, 2019). Connecting 

adjacent coastal forests can provide safe passage for wildlife, ensuring less of an impact on 

surrounding human populations as the wildlife becomes displaced due to loss of habitat, as well 

as ensuring the continued survival of these species. Continuous passage into the adjacent inland 

forest also assists in seed dispersal and other means of vegetation migration as climate change-

induced changes in groundwater affect soil properties further inland in the future.  

Conclusions  

Our review of the scientific literature and discussion with leading experts suggests that 

the most important proximate mechanisms driving coastal forest edge dieback are sea-level rise 

induced changes in the groundwater table (G. Carleton, personal communication, May, 2020; 

Nuttle and Portnoy, 1992) in concert with increased saltwater inundation related to storm surges 

(Fernandes et al., 2018; Dai et al., 2011; Conner and Inabinette, 2003).  The longer-term rise in 
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groundwater levels increasingly stresses the forest vegetation and decreases regeneration 

potential.  Episodic storm surges may then exceed the salinity or saturation tolerances of existing 

trees leading to a wave of mortality that leaves the site inhospitable to subsequent regeneration. 

An acceleration of sea-level rise rates (i.e., the ultimate driver, Figure 1) is expected to further 

strengthen the effects of these proximate mechanisms. 

It is important to take both the marsh and forest ecosystems into account as an integrated 

unit when determining management plans. Some of the solutions to coastal forest problems may 

lie in the management that takes place in the marsh such as the alteration of ditches and dikes. 

The possible use of engineered structures such as RTE and CRT systems requires more research 

but remains an option. The key to creating management plans that benefit both the marsh and the 

upland ecosystems is a collaboration between management entities and experts in both 

ecosystems. A combined management approach ensures that management effort is beneficial for 

both ecosystems in the long term. The salt marsh and the adjacent coastal forest are intimately 

linked and should be considered holistically. With a better understanding of each of the 

mechanisms at work in these ecosystems, managers may be better prepared for the changes 

ahead and facilitate proactive adaptation strategies.  Finally, given the need for the marsh 

ecosystem to migrate inland to maintain ecosystem services, easements or buyouts are vital to 

ensure that there is ample space for the marsh and upland systems to migrate together. Forward 

thinking land use planning is needed to promote no net loss of either marsh or coastal forest 

ecosystems to ensure the continued provision of their vital services to society.  
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