Home Events All Climate Events Webinar: Predicting GNSS disruptions using Machine Learning

All Climate Events

Events Calendar

Webinar: Predicting GNSS disruptions using Machine Learning

Download as iCal file

 

Wednesday, January 16, 2019. 4:00PM Eastern Time. Webinar: Predicting GNSS disruptions using Machine Learning. Karthik Venkataramani, ASTRA. Sponsored by NCAR|UCAR. More information here.


Space weather-driven ionospheric perturbations cause rapid amplitude and phase fluctuations in the radio signals that propagate through it. Such ‘scintillation’ events often compromise the fidelity and availability of Global Navigation Satellite System (GNSS) signals at ground based receivers, affecting services that rely on positioning and timing information provided by the system. Increasing reliance on GNSS and GNSS-based services has resulted in the need for accurate forecasts of space weather driven service disruptions. This is particularly true at high latitudes, where our understanding of space-weather effects on the ionosphere remains incomplete.


To tackle this challenge, a data-driven approach is employed to develop machine learning based models that utilize available historical datasets to produce a model capable of forecasting GNSS disturbances. Using a Sun-to-Earth system approach, the machine learning pipeline utilizes data from both space- and ground- based observations of solar activity, geomagnetic variations, and ionospheric conditions derived from GNSS signal data. Preliminary results for predicting ionospheric scintillations using various machine learning algorithms is presented along with relevant metrics that evaluate the utility of these techniques.

Location Webcast


Wednesday, 16 January 2019,  4:00


Connect with Rutgers

Climate Web Sites

Contact Us

c/o Department of Environmental Sciences
Rutgers University
Environmental and Natural Resources Sciences Building
14 College Farm Road
New Brunswick, NJ 08901-8551