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OVERVIEW HEAVY PRECIPITATION CHANGES PHYSICAL MECHANISMS
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Modeling Group Model Name
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology ACCESS1.0
(BOM) (Australia)
Beijing Climate Center, China Meteorological Administration (China) BCC-CSM1.1*
College of Global Change and Earth System Science, Beijing Normal University (China) BNU-ESM
Canadian Centre for Climate Modelling and Analysis (Canada) CanESM2*
National Center for Atmospheric Research (USA) CCSM4 (r6)
Centro Euro-Mediterraneo per | Cambiamenti Climatici (ltaly) CMCC-CM
Centre National de Recherches Meteorologiques / Centre Europeen de Recherche et Formation Avancees = CNRM-CM5*

en Calcul Scientifique (France)
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate CSIRO-Mk3.6.0*
Change Centre of Excellence (Australia)

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences (China)
NOAA Geophysical Fluid Dynamics Laboratory (USA)

Met Office Hadley Centre (UK)

FGOALS-s2*
GFDL-ESM2G*
GFDL-ESM2M*
HadGEMZ2-CC*

HadGEM?2-ES
Institute for Numerical Mathematics (Russia) INM-CM4*
Institut Pierre-Simon Laplace (France) IPSL-CM5A-LR*

Atmosphere an

IPSL-CM5A-MR*
IPSL-CM5B-LR
d Ocean Research Institute (The University of Tokyo), National Institute for Environmental MIROC5*

Studies, and Japan Agency for Marine-Earth Science and Technology (Japan)

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The

University of

MIROC-ESM~*

Tokyo), and National Institute for Environmental Studies (Japan) MIROC-ESM-CHEM*

Max Planck Institute for Meteorology (Germany) MPI-ESM-LR*
MPI-ESM-MR*
Meteorological Research Institute (Japan) MRI-CGCM3*

Norwegian Climate Centre (Norway)

NorESM1-M
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List of the CMIP5 models used for analysis In this poster. Asterisks next to the model names indicate the 17 models that
were used for the atmospheric circulations analysis (right column on poster) due to output availability. All 24 models

were u

colum

sed for the precipitation analysis (middle column on poster). The approximate spatial resolutions (Lon. and Lat.

ns) were calculated by dividing 360° or 180° by the number of grid cells in the longitude or latitude dimensions,
respectively. Asterisks next to spatial resolution denote climate models whose grids were transformed to the common
2.5°%2.5° lon-lat resolution using linear interpolation. All others were transformed using area averaging. The first
ensemble member run (except for the NCAR-CCSM4, in which run 6 was used) was used from each model.
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